
Digital Object Identifier (DOI) 10.1007/s100520000481
Eur. Phys. J. C 17, 535–538 (2000) THE EUROPEAN

PHYSICAL JOURNAL C
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Abstract. We propose a new point of view on gauge theories, based on taking the action of symmetry
transformations directly on the space coordinates. Via this approach the gauge fields are not introduced
at the first step, and they can be interpreted as fluctuations around some classical solutions of the model.
The new point of view is connected to the lattice formulation of gauge theories, and the parameter of the
non-commutativity of the coordinates appears as the lattice spacing parameter. Through the statements
concerning the continuum limit of lattice gauge theories, the suggestion arises that the non-commutative
spaces are the natural ones to formulate gauge theories at strong coupling. Via this point of view, a close
relation between the large-N limit of gauge theories and string theory can be made manifest.

Recently much attention has been paid to the formula-
tion and study of field theories on non-commutative (NC)
spaces [1–3]. Apart from the abstract mathematical inter-
ests, there were various physical motivations for doing so.
One of the original motivations has been to get “finite”
field theories via the intrinsic regularizations which are
encoded in some of NC spaces [4,5]. The other motiva-
tion came from the unification aspects of theories on NC
spaces. These unification aspects have been the result of
the “algebraization” of “space, geometry and their sym-
metries” via the approach of NC geometry [6]. Interpret-
ing the Higgs field as a gauge field in the discrete direction
of a two-sheet space [7] and unifying gauge theories with
gravity [8,9] are examples of this point of view on NC
spaces.

The other motivation refers to the natural appearance
of NC spaces in some areas of physics, and the recent
one in string theory. It has been understood that string
theory is involved by some kinds of non-commutativities;
two examples are
(1) the coordinates of bound states of N D-branes are
represented by N ×N Hermitian matrices [10], and
(2) the longitudinal directions of D-branes in the presence
of a B-field background appear to be NC, as seen by the
ends of open strings [11,12,1].

As mentioned above, one of the motivations to formu-
late theories on NC spaces has been a unified treatment
of the symmetries living in a space and the space itself.
One of the most important symmetries in physical theories
is gauge symmetry, and to be extreme in identifying the
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space with its symmetries is to take the action of symme-
try transformations on the space. In usual gauge theories
the action of the symmetry transformations is defined on
the gauge fields, Aµ, but in the new picture one takes the
action on space, and to be more specific, on the “coordi-
nates” of space. It will be our main strategy in presenting
a new point of view on gauge theories. As will be made
clear later, the main tools and points of view for different
subjects and discussions here are developed and originate
in the D-branes of string theories [13,14]. Here we try to
reorganize the facts and discussions to present a new pic-
ture for gauge theories and see how things should be by
this approach. The action which we are concerned with
here is the Eguchi–Kawai one [15], but with a different
interpretation of the configurations which are described
by the action. As we will see, the new interpretation is
sufficiently rich to recover some aspects of gauge theories
which were already known, but maybe as disjoint facts. It
will be shown that the new interpretation is related on one
side to the lattice formulation of gauge theories [16], and
with a different representation is connected to the ordi-
nary formulation of gauge theories. In relation with lattice
gauge theory the parameter of the non-commutativity of
the coordinates appears as the lattice spacing parameter.
Through the statements concerning the continuum limit
of lattice gauge theories the suggestion arises that NC
spaces are the natural ones to formulate gauge theories at
the strong coupling limit. Also the model can make man-
ifest the close relation between the large-N limit of gauge
theories, known to be the theory of “Feynman graphs” as
the world-sheet of strings, and string theory [17].
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1 The model

As mentioned above, instead of introducing gauge fields,
we define the gauge symmetry transformations directly
on the generators of the displacement in space, calling
them “coordinates” and representing them by X̂µ [3]1,
and we assume them to be N ×N Hermitian matrices.
So to describe the generators in an infinite volume these
matrices should be taken with N → ∞, even when they
are used to formulate a finite group gauge theory. So we
take the definition of the gauge transformations as

X̂µ → X̂µ′ = ωX̂µω†, µ = 1, · · · , d, (1)

where ω is an arbitrary unitary N ×N matrix (so it be-
longs to a group, say G). This transformation is the same
as in [3] but not in the infinitesimal form. On the other
hand, it is the same transformation as the one acting on
the coordinates of D-branes via N ×N Hermitian matri-
ces (see e.g. [18,19]). So the coordinates in a space which
contains the bound states of N D-branes enjoy such a
transformation. Also if from the beginning one chooses
the matrices X̂µ to belong to L2

∞(RRd) ⊗ Mn×n in the
form X̂µ = i∂µ ⊗ 1n + g

Y M
1⊗Aµ [20], they will have the

same behavior under gauge transformations as (1). So we
are not very far from the usual language of gauge theories.

Our coordinates are matrices and NC, and as usual
they are accompanied by a length scale which is the size
of the NC effects to appear. Here we denote this length
scale by �. We define the unitary matrices

Uµ ≡ ei�X̂
µ

, (2)

as the operators which, acting on the states, constitute the
displacement �. With the ideas coming from lattice gauge
theory, and also recalling the role of covariant derivatives
as the tools of parallel transformations, we define the ob-
jects:

Ωµν ≡ UµUνU
†
µU

†
ν , (3)

with the property Ω−1
µν = Ωνµ = Ω†

µν . Then the action of
the model we take to be

S = − 1
g2

∑
µ,ν

TrΩµν , (4)

which because of the Tr is invariant under the transforma-
tion (1). This action is essentially the Eguchi–Kawai one
[15]. In the context of the Eguchi–Kawai model the sym-
metry of the action is a global symmetry, i.e. the symmetry
transformations on the gauge fields are space independent.
But as we will see, interpreting the X̂µs as space coordi-
nates encodes a sufficiently rich structure in the model to
extract gauge fields and their local symmetry transforma-
tions just as in the usual formulation of gauge theories.
One may define in analogy with the field strength

Ωµν ≡ e−i�2Fµν , (5)

1 In [3] these objects are called “covariant coordinates”

which in the small � limit takes the form

Fµν = −i
[
X̂µ, X̂ν

]
+

1
2
�
[
X̂µ + X̂ν ,

[
X̂µ, X̂ν

]]
+O(�2). (6)

The action for small � has the form

S|�→0 = − 1
g2

∑
µ,ν

Tr
(
1 − i�2Fµν − 1

2
�4F 2

µν + · · ·
)
. (7)

The linear term in Fµν does not have a contribution to
the action because it is antisymmetric in µν2. So for small
values of � we have

S|�→0 = − 1
2g2
�4

∑
µ,ν

Tr
[
X̂µ, X̂ν

]2

+const. term +O(�5). (8)

The actions (4) or (8) are actions for the matrices de-
scribing the space and its symmetries. Issues such as the
dynamical generation of space and its dimension, and also
the gauge group via matrix theory have been discussed in
[21,22].

2 Relation to lattice gauge theory
(strong coupling)

The model described with the action (4) already has the
form of the lattice gauge theory at large N , called the
Eguchi–Kawai model. Here we also want to mention the
connection to lattice gauge theory for finite groups. In fact
the relation between NC geometry and also NC differen-
tial geometry with lattice gauge theory has already been
established in previous works [23,24]. Here we try to con-
struct the relation explicitly. Let us have a look at the
action of lattice gauge theory:

Slgt = − 1
g2

∑
µ,ν

∑
i

Tr
(
eiaAµ

i eiaAν
i+µe−iaAµ

i+ν e−iaAν
i

)
, (9)

with a the lattice spacing parameter and i as a d-vector
representing a site in the d dimensional lattice. Also we
have used the symbol i + µ for (i1, · · · , iµ + 1, · · · , id). To
get a U(m) lattice gauge theory, as the first step, take
the Ansatz resulting from d times block-diagonalizations
of the matrices X̂µ, with the size of the last block m×m.
So the action takes the form

Sblocked = − 1
g2

∑
µ,ν

∑
i

Tr
(
ei�x̂

µ
i ei�x̂

ν
i e−i�x̂µ

i e−i�x̂ν
i

)
,(10)

in which the index ij in the vector i is counting the place of
a block in the jth step of the block-diagonalizations. The
Tr above is for the U(m) structure of the x̂µ

i matrices. But

2 It is not true that because of Tr the linear term can be
ignored. For infinite dimensional matrices one can get a non-
zero trace from a commutator
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this action is still different from the lattice action (9). To
make the exact correspondence we should do a slight mod-
ification in one of the steps of the block-diagonalizations.
Firstly, take the matrix ∆ as

∆rs = δr,s−1, for infinite size,
∆rs = δr,s−1, ∆p1 = 1, for size p× p, (11)

with the properties ∆−1 = ∆T = ∆†, so ∆ is unitary. For
this matrix and a diagonal matrix A we have

∆diag.(a1, · · · , ap−1, ap)∆−1 = diag.(a2, · · · , ap, a1). (12)

By using the matrix ∆ we modify the block-diagonaliza-
tions mentioned above, by requiring that in the µth step
of the diagonalizations of the matrix X̂µ it picks up a ∆
with the appropriate size, as in

X̂µ →
µth step x̂

µ∆. (13)

So in two steps of d steps two pairs of ∆ and ∆−1 ap-
pear around the X̂µ and X̂ν matrices in the action, and
this causes the appropriate shift in the blocks to obtain
the action of lattice gauge theory (9). In comparison with
the lattice action one sees that the parameter � has ap-
peared as the lattice spacing parameter. This means that
the lattice spacing parameter is a measure of the appear-
ance of NC effects [24]. Based on the lattice calculations,
one can derive the relation between the parameters �, the
coupling constant g and the string tension K, and via this
relation the statement follows that the continuum limits
of the lattice gauge theories are obtained just at exactly
zero coupling [19,25]. So the suggestion arises that the
strong coupling limit of the gauge theories will find a rea-
sonable and natural formulation in NC spaces (for more
discussions of this point see [19,18]). Also via this explicit
construction the observation is made that both the struc-
ture of space (here a lattice) and also the gauge fields
living in the space can be extracted from the large matri-
ces X̂µ. We see another example of this behavior in the
relation between the model and the ordinary formulation
of gauge theories.

3 Relation to ordinary gauge theory
(weak coupling)

It is known that the classical action of lattice gauge theo-
ries at small lattice parameter is equivalent with the clas-
sical action of gauge theories, the so-called weak coupling
limit of lattice gauge theory [25]. So up to now, by taking
the limit �→ 0 in the action obtained in the previous sec-
tion we can get the ordinary action of gauge theories. In
the following we give another presentation of this, which
of course contains the procedure of going to the continuum
limit, but a little implicitly. To get the ordinary gauge the-
ory we use the techniques which have been developed in
constructing D-branes from matrix theories [26,27]. Here
we just recall the construction and refer the reader to the

literature (see e.g. [28]). For large matrices one always can
find a set of matrix pairs (q̂i,p̂i) with sizes ni × ni so that

[
q̂i, p̂j

]
= iδij1ni

. (14)

The above commutator is not satisfied for finite dimen-
sional matrices. We assume that the eigenvalues of q̂i and
p̂i are distributed uniformly in the interval [0, (2πni)1/2].
To get a U(m) gauge theory one can break the matri-
ces X̂µ with size N down to matrices with sizes ni and
m such that N = m · n1n2 · · ·nd/2 when d is even, and
N = m · n1n2 · · ·n(d+1)/2 for d odd, with the condition
N,ni → ∞ and m finite. On the other hand, it is easy to
see that matrices in the form

�2X̂2i−1
cl = 1n1 ⊗ · · ·︸ ︷︷ ︸

i−1

q̂iLi√
2πni

⊗ · · · ⊗ 1nd/2 ⊗ 1m,

�2X̂2i
cl = 1n1 ⊗ · · ·︸ ︷︷ ︸

i−1

p̂iLi+1√
2πni

⊗ · · · ⊗ 1nd/2 ⊗ 1m,

i = 1, · · · , d/2, (15)

for even d, and with an extra one

�2X̂d
cl = 1n1 ⊗ · · ·︸ ︷︷ ︸

d−1
2

q̂
d+1
2 Ld√

2πn d+1
2

⊗ 1m, (16)

for odd d, solve the equations of motion derived from the
action. Here the Lis have the interpretation of large radii
of compactifications [26,27]. By the equations of motion
for ni one obtains [27]

LiLi+1

2πni
∼ �2. (17)

By admitting fluctuations around the classical solutions,
one can write

X̂µ = X̂µ
cl + gY M

Aµ, (18)

where the Aµ are N ×N Hermitian matrices and func-
tions of the (q̂i, p̂i) matrices, also with the same structure
of the matrices X̂µ. By inserting X̂µ and expanding the
action in the �→ 0 limit up to second order of the fluctu-
ations, and with the identifications [28,27,26]

[p̂i, ∗] ∼ i∂2i−1∗,
[q̂i, ∗] ∼ i∂2i∗,
Tr(· · ·) →

∫
ddx(· · ·), (19)

one recovers the ordinary action for U(m) gauge theory.
The coupling constant of the resulting gauge theory is
found to be g2

Y M
∼ �d−4g2, which shows that in the limit

of small � and for d ≥ 4 the theory corresponds to the
weak coupling limit.
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4 Large-N gauge theory and string theory

It is known that in a diagrammatic representation, the
partition function of a gauge theory at large N is given by
the (1/N)genus expansion, with genus taken to be that of
the “big” Feynman graphs of the theory. Also it is shown
that the density of “holes” (quark loops) in the graphs
goes to zero with 1/N . So in the extreme large-N limit the
theory is described by smooth graphs. By interpreting 1/N
as the coupling constant of a string theory, the expansion
mentioned above takes the form of the standard string
perturbation one [17]. All of the features mentioned here
can be described by the point of view proposed in this
work. Firstly, at large N the action can take the form of
that of free strings. We are thinking of smooth strings, so
we take �→ 0 and N → ∞. Thus the action becomes

S|�→0 = − 1
2�4g2

∑
µ,ν

Tr
[
X̂µ, X̂ν

]2
− 1
g2

Tr1N , (20)

in which we have applied the replacement X̂µ → X̂µ/�2

and so the new X̂µ has the length dimension. To get free
strings one uses the map between the matrix variables
(q̂, p̂) and the continuous phase space variables (σ1, σ2)
[27,26,29]

Tr(· · ·) →
∫

d2σ
√
det grs(· · ·),

[A,B] → {A,B}PB,

[q̂, p̂] = i → {σ1, σ2}PB = 1/
√
det grs,

[p̂, ∗] → i∂1∗, [q̂, ∗] → i∂2∗, (21)

with the definition of the Poisson bracket {A,B}PB =
1/(det grs)1/2εrs∂rA∂rB, (r, s = 1, 2). By these replace-
ments one gets the action of free strings in the Schild
form [30,27]. Also by solving the equation of motion for
(det grs)1/2 and inserting the solution in the action one
can obtain the Nambu–Goto action.

The issue of interactions is more subtle, and it also has
been approached previously [31]. It is shown that the 1/N
expansion for this action corresponds to the perturbation
theory of strings by reproducing the light-cone string field
theory through the Schwinger–Dyson equations.
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